An Integrated Wearable Wireless Vital Signs Biosensor for Continuous Inpatient Monitoring

D. L. T. Wong, Senior Member, IEEE, J. Yu, Member, IEEE, Y. Li, Senior Member, IEEE, C. J. Deepu, Senior Member IEEE, D. H. Ngo, C. Zhou, Member, IEEE, R. S. Shashi, A. S. L. Koh, R. T. Y. Hong, B. Veeravalli, Senior Member, IEEE, M. Motani, Fellow, IEEE, K. C. Chua, Y. Lian, Fellow, IEEE, C. H. Heng, Senior Member, IEEE

Abstract—A compact, light-weight and low-power wireless vital signs monitoring system based on Wireless Body Area Network (WBAN) protocol has been developed. The system, VySys, includes two compact wearable biosensor devices for continuous vital signs capturing and transmission, a gateway to relay the message collected from the biosensors to cloud, and finally a client apps to access and display the stored data in the cloud. Both biosensor devices can last for 24 hours and weigh less than 22 g and 44 g, respectively. They consist of proprietary in-house bio-sensing integrated circuit (IC) and commercial off-the-shelf Bluetooth Low Energy (BLE) module. VySys has been deployed in clinical trials with 14 subjects. From the studies, the accuracy and advantage of VySys are evaluated and the five vital signs captured (heart rate (HR), respiration rate (RR), temperature (TMP), oxygen saturation (SpO₂) and systolic blood pressure (SBP)) are benchmarked against a commercial medical-grade device. The results show strong statistical correlation (r > 0.68). In terms of clinical significance, all its mean difference are within limits of accepted clinical discrepancies. In terms of efficacy by comparing against the best known reported results, (1) VySys is more precise by 28.2%, 36.2%, 70.0%, 37.6% and 34.4% for HR, RR, TMP, SpO₂ and SBP, respectively and (2) has a narrower 95% limit of agreement (LoA) by 24.5%, 23.9%, 50.6%, 37.4% and 34.4% for HR, RR, TMP, SpO₂ and SBP, respectively.

Index Terms—Wearable, low-power, wireless, sensor, aging population

Research supported by National Research Foundation, Singapore, under Grant NRF-CRP8-2011-01. Corresponding author is denoted by asterisk.

David Liang Tai Wong, Jufeng Yu, Day Hoa Ngo, Chongyu Zhou, Shashi Raj Singh, Bharadwaj Veeravalli, Mehul Motani, Kee Chiang Chua, Chun Huat Heng* are with Electrical and Computer Engineering, National University of Singapore, Singapore (e-mail*: elehch@nus.edu.sg).

Alvin Swee Leong Koh and Rachel Tsui Ying Hong are with Medical Engineering Research & Commercialization Initiative (MERCI), Department of Surgery, Yong Loo Lin School of Medicine of the National University of Singapore, Singapore.

Chacko John Deepu is with School of Electrical and Electronic Engineering, University College Dublin, Ireland.

Yongfu Li and Yong Lian are with Department of Micro-Nano Electronics and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China.

DEVELOPED countries with ageing population are facing increasing healthcare cost. Statistically, elderly are four times more likely to get admitted and tend to stay two times longer than the younger population [1]–[3]. Continuous monitoring of vital signs is crucial to assess the condition of a patient and to avoid adverse events. This has been the norm for patients under the intensive care unit (ICU). Even for normal ward, it is common to monitor patient’s five vital signs during every interval of 4 to 6 hours [4]. This is usually labor intensive, and accounts for about 30% of a nurse’s workload.

The advancement in wireless and sensor technology has brought an opportunity to mitigate the above-mentioned issue. In terms of sensing using fabric materials, [5], [6] have brought about techniques to measure vital signs using textile materials embedded onto clothing which can potentially improve patient compliance. However, they are limited in capturing a few vital signs such as heart rate (HR) and respiration rate (RR). In addition, these technologies are not very mature and are yet to appear in the commercial space. For commercial wearable light-weight wireless patches, the reported results are usually with fewer than two vital signs, such as HR and RR which are...
still insufficient to serve as a complete monitoring tool for inpatient [7]–[10].

There were also research attempts where certain vital signs such as HR, oxygen saturation (SpO2), blood pressure (BP) and temperature (TMP) are derived from a single continuous sensor such as an accelerometer and PPG [11], [12] but only remained in the research settings. In recent papers, there were works to increase the number of vital signs that can be captured but it still lacks the complete five vital signs and it is bulky without wireless capabilities [13], [14]. In [15], significant effort has been made to miniaturize an ‘all-in-one’ vital signs measurement device to reduce its size and weight. However, RR monitoring is absent and it is not suitable for wearable and continuous wireless monitoring.

There were also research done to increase the comfort of patients while being monitored at home by means of a wearable wireless monitoring with specialized anomaly detection but they lack in providing all the five vital signs [16], [17]. In [18], a complete five vital signs monitoring system was proposed but it lacks in terms of weight, dimension, continuous operating duration and accuracy. In addition, the article gave a high-level overview of the wireless performance but made no performance analysis or comments on data loss during multiple concurrent sensors transmission. Although they have been many reported compact and low power wireless sensor device targeting for such application, we have yet seen a fully integrated, wearable continuous, light-weight, end-to-end five vital signs system reported to date. There is also a lack of studies on the feasibility and effectiveness of such wireless system.

In this work, we developed Vital Signs Systems (VsSys) to investigate the feasibility and effectiveness of such system while addressing some limitations of the existing systems. VsSys is the most comprehensive and light-weight end-to-end wireless vital signs monitoring platform reported to date. It provides up to five real-time vital signs monitoring, i.e. electrocardiogram (ECG) with HR, RR, TMP, SpO2 and derived systolic blood pressure (SBP). It leverages on cloud infrastructure to enable centralization of data storage and easy data access on demand. More importantly, client apps with graphical user interface (GUI) are tailored based on the input of healthcare personnel.

To target for wearability and long hour of continuous monitoring, the wireless wearable biosensors are miniaturized and optimized for low-power consumption. This is made feasible with our own proprietary low-power bio-medical integrated circuit (IC) [19]–[25], which can provide continuous 3-lead ECG and RR monitoring at nano-watt level. In addition, customized data packet and protocol are employed to maximize the energy efficiency of the adopted Bluetooth Low Energy (BLE) module.

In this paper, we will report the results obtained using the developed system through clinical trials on 14 subjects. These results are benchmarked against a commercial instrument, and shine light on its feasibility and effectiveness.

The contributions of this work are summarized as follows:

1. Design and implementation of a light-weight, low-power, wireless end-to-end continuous five vital signs monitoring system supporting up to 24 hours.
2. Reported on the efficacy or accuracy of the wireless end-to-end continuous monitoring system for 14 healthy subjects.
3. Reported on the robustness of the wireless end-to-end system under 24-hour continuous and simultaneous transmission for 4 subjects.
4. Comparison methodology at 12-second interval enabling larger measurement pairs to be captured in contrast to manual methods of data collection.
5. BLE configuration of the connection interval and slave latency while buffering and packing of raw signals on application data frame before transmission enabling reliable continuous transmission and power reduction on the biosensors.
In Section II, we introduce the system architecture for the overall end-to-end integrated system of VsSys. This is followed by Section III where we discuss the clinical trial setup and its results. In Section IV, we compare the results of VySys against other devices, the effects of motion artifacts and the trends of wearable sensors. Finally, we conclude in Section V.

II. SYSTEM ARCHITECTURE

VsSys consists of three key components, i.e. wireless vital signs biosensors for data capture, gateway and cloud infrastructure for data storage and analytics processing, and client apps for displaying clinically vital information as shown in Fig. 1.

A. Biosensors

There are two wearable biosensors for vital signs monitoring as shown in Fig. 2: 1) NUS_TRE which captures ECG, RR and TMP signals through on-body electrodes; 2) NUS_PPG which captures photoplethysmography (PPG) signal through finger clips.

The NUS_TRE has 6 snap-in electrodes. Four of them are used for 3-lead ECG, positioned at the left-arm (LA), right-arm (RA), left-leg (LL), and right-leg (RL) electrodes. The other two are used for RR, positioned across the chest at LL and RA, respectively. Proprietary low-power integrated 2-channel ECG and 2-channel bio-impedance (IMP) analog front end (AFE) chip [19]-[25] is used to amplify and digitize these captured signals. The acquired data is then sent to a microcontroller unit (MCU), CC2540, via serial peripheral interface (SPI).

For body TMP sensing, the NUS_TRE employs an external thermistor which is placed under the armpit of test subject. The resulting voltage information is then captured by an analog-to-digital converter (ADC) embedded within the MCU.

The MCU also control a BLE transceiver to link up the biosensor with the gateway for data transmission. Design efforts through component selection and printed circuit board (PCB) design optimization have led to device miniaturization down to 32×2.9×0.9 mm as shown in Fig. 3. The detailed design specifications are listed in Table I.

The NUS_PPG employs transmissive light-based technology to measure the rate of blood volume changes and oxygen saturation (SpO₂). A finger is placed between two emitting LED diodes (red and infrared) and a receiving photodiode. The MCU then controls the LEDs emission, and samples the received illumination intensity of the photodiode [26]. Similarly, a BLE transceiver is used to send the data to the gateway as shown in Fig. 4. The detailed specifications are listed in Table II.

Wireless module consumes the most energy of the whole system. Hence, the data packet and wireless communication protocol of the BLE module employed have been redesigned to achieve low power consumption with high data rate transmission. Much design and implementation effort are put into tuning the BLE’s generic access profile (GAP) to attain a suitable trade-off between the power consumption and robustness during each rapid processing and transmission cycles. In addition, at the BLE’s generic attributes (GATT) layer, we made the data packaging customizable to support additional throughput, making it easier to incorporate more sensor data in the future. The connection interval and slave latency in the GATT are configured to 7.5 ms and 0 ms, respectively. The connection interval is set to the lowest supported value and no connection events can be skipped enabling a more reliable transmission at the cost of increased power consumption. To reduce the power consumption, the MCU buffered the acquired raw sensor data and packed 20 bytes (maximum allowable application data frame for BLE) before the physical wireless transmission. This has led to about 43.7% power reduction. The resulting biosensors can operate continuously for about 24 hours with a single battery charge.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2019.2942099, IEEE Sensors Journal

B. Gateway and Cloud with Analytics

The gateway is employed as a conduit between the biosensors to the Cloud [27]. To conserve the biosensor power consumption, it is unrealistic to expect long distance with continuous transmission from the biosensor device. The low-power wide-area network (LPWAN) such as LoRA and Sigfox, supports low-power and long-range transmission but it is unable to support the bandwidth required for streaming continuous raw signals due to its inherent low data rate [28], [29]. After much investigation, the low-power BLE interface was chosen as the wireless interface between the biosensor and the gateway as shown in Fig. 1. The gateway and the Cloud should be able to receive, store, process and retrieve the biosensor data. Given the processing power of Cloud, it makes sense to incorporate signal processing algorithms to extract key biometrics for the biosensor data, such as HR, RR, TMP, and SpO2. Signal processing algorithms can also be employed to mitigate the commonly observed motion artifacts.

The HR is calculated based on the time interval between two successive R-R peaks in the ECG waveform. Techniques similar to [20] have been employed, such as smoothing filter, integration, thresholding, and averaging. The RR is calculated based on the time interval between two successive crests in the IMP waveform. Eight successive intervals are observed to average the RR. The SpO2 is calculated based on the modulation ratio between the received red and infrared signals of the PPG waveform. We used the Contec MS100 Simulator along with a high dependency (HD) medical grade predicate (gold-standard) device to calibrate our SpO2 through a modulation plot [26], [30]. The relationship between the measured ratio to the corresponding SpO2 level is stored in the Cloud as a look-up table (LUT) to ease the data extraction by the client apps. Similarly, calibrated thermistor reading to the corresponding TMP is stored as LUT to extract the correct TMP reading for client apps [31].

C. Client Apps

The client apps are tailor-made based on the survey results collected from hospital healthcare personnel. This is critical as it shows very similar user interface as existing hospital medical instrument, and also incorporates features that are considered useful by the main user. For example, it provides both ward view and bed view as shown in Fig. 5. The overall ward view summarized the key vital signs and biometrics for all patients while the individual bed view displays more detailed and enlarged vital signs for a specific patient. Furthermore, it also allows query for past collected data from the Cloud which is helpful for diagnosis.
III. CLINICAL RESULTS

Our biosensors have undergone preliminary (pre-scan) IEC medical safety test (IEC60601-1), electromagnetic disturbance and radiation immunity test (IEC60601-1-2 and IEC61000-4-2). The IEC60601-1-2 recommends CISPR 11 standard for electronic emission test on industrial scientific and medical (ISM) devices, and our biosensors have passed the emission test [32]. The rationale of the emission test is to ensure that the biosensors do not generate unwanted emission above a certain threshold as this could potentially disrupt the operation of the existing medical devices in the hospital. Two trials, i.e. controlled clinical trial and the extended clinical trial, using our developed system were carried out after obtaining ethics approval from institutional review board (IRB) and domain specific review board (DSRB) approval under the reference number IRB–B-16-264 and 2017/00605, respectively. After the clinical trials, we evaluated the data collection overhead and robustness of wireless packet transmission. We also benchmarked the efficacy of VsSys.

A. Controlled Clinical Trial

The objectives of the controlled clinical trial are to evaluate the safety of the biosensor device, efficacy and the robustness of the wireless vital sign monitoring system. Besides subjecting our biosensor to IEC test as mentioned earlier, the biosensor is also closely monitored for its warmness and wearability throughout the trial. In terms of efficacy, the measured results from our system are compared against the predicate device used in the hospital. In terms of robustness, the gateway and cloud are closely monitored to observe any drop-in data packet. In this trial, a total of 10 participants were recruited and monitored continuously for 8 hours. With 2 participants involved each day, the whole trial duration lasted for 5 days. The details of the cohort are tabulated in Table III.

To evaluate the robustness of the wireless communication link, participants were allowed to leave for toilet and lunch breaks. Upon returning, it was found that our biosensors can automatically be probed to re-establish the BLE connection without any human intervention. The reliable communication range of the biosensors with the gateway is also established to be around 3 meters. Beyond which, the packet loss becomes intolerable. In addition, to mitigate the wireless interference issue due to the crowded spectrum at 2.4-GHz industry, ISM radio band, we have configured the Wi-Fi router to operate at 5-GHz ISM band.

B. Extended Clinical Trial

After the controlled clinical trial on healthy subjects, we proceed with the extended clinical trial under hospital ward environment as shown in Fig. 6. Similar objectives such as efficacy and robustness are evaluated in this trial. However, the trial duration has been extended to 24 hours to further stress on the system’s performance (biosensor, gateway, cloud and client apps) of the end-to-end system. The cohort size was 4 and the statistics are summarized in Table IV. Unlike the controlled clinical trial, the participants were also allowed to move within the hospital ward environment.

<table>
<thead>
<tr>
<th>ID</th>
<th>HR (%)</th>
<th>IMP (%)</th>
<th>TMP (%)</th>
<th>PPG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject01</td>
<td>0.0093</td>
<td>0.0098</td>
<td>0</td>
<td>0.0102</td>
</tr>
<tr>
<td>Subject02</td>
<td>0.0234</td>
<td>0.0347</td>
<td>0</td>
<td>0.0106</td>
</tr>
<tr>
<td>Subject03</td>
<td>0.0258</td>
<td>0.0417</td>
<td>0</td>
<td>0.0106</td>
</tr>
<tr>
<td>Subject04</td>
<td>0.0102</td>
<td>0.0073</td>
<td>0</td>
<td>0.0106</td>
</tr>
</tbody>
</table>

Fig. 7. Packet Loss Rate – a) NUS_TRE (Top): ECG packet loss for 24 hours for the 4 subjects. b) NUS_PPG (Bottom): PPG packet loss for 24 hours for the 4 subjects. The data loss is mainly contributed by collision, obstruction or signal attenuation due to distance between the biosensor and the gateway.
clinical trial, a medical practitioner is present onsite to access the subject’s eligibility to wear our biosensor for long hour. In addition, 4 subjects are on trial concurrently instead of 2 to evaluate the capacity of our system. From the trial, all the biosensors are found to operate beyond 24 hours, and no serious adverse events have been observed during the trial.

C. Data Collection Overhead

For manual vital signs monitoring, it takes a nurse roughly 10 minutes for each patient, and is repeated every 4 hours. This accounts for around 30% of her time. In comparison, the VySys requires only a one-time installation of about 10 minutes per patient, which results in significant time saving for such monitoring activities.

D. Robustness of the Wireless End-to-end

Wireless based monitoring always raise concerns on the robustness of the wireless link, which could incur critical data loss. In our studies, we investigated the data loss by tracking the data packet sequence number incorporated within each transmission packet. The results of the data loss based on each subject during the 24-hour extended clinical trial are tabulated in Table V. The ‘30 Mins’ refers to a 30 minute data capture that is used for benchmarking for the first four subjects in the next sub-section. The results of the data loss for entire trial is depicted in the ‘24 Hours’ row. The 24-hour data loss is shown in Fig. 7. The mean data loss is 0.0657%, 0.0496% and 0.0112% for ECG, IMP and PPG, respectively. For ECG, this accounts to about a single sample loss for every 6 complete ECG cycles with HR of 60 bpm (beats per minute) which is considered to be negligible for HR estimation. For IMP, this accounts for around 30% of her time. In comparison, the VySys requires only a one-time installation of about 10 minutes per patient, which results in significant time saving for such monitoring activities.

For the first approach, 2 complete ECG cycles of Lead II from both VsSys and the predicate, and is more than most clinical evaluation [13], [14], [18], [15]. In this evaluation, we employed different techniques such as overlaying vital signs from both VsSys and the predicate device. We chose a 30-minute period for the comparison, which statistically provides sufficient number of measurement pairs of VySys by benchmarking our results against predicate device. The observed difference is insignificant, and the subtle morphological differences could be due to the small difference in electrode placement. The prominent PQRST waveform can be clearly observed for both cases. The small differences between them did not impact the HR estimation.

E. Benchmark and Efficacy

As mentioned earlier, it is important to evaluate the efficacy of VySys by benchmarking our results against predicate device. We chose a 30-minute period for the comparison, which statistically provides sufficient number of measurement pairs from both VsSys and the predicate, and is more than most clinical evaluation [13], [14], [18], [15]. In this evaluation, we employ different techniques such as overlaying vital signs from different devices, and statistical methods.

For the first approach, 2 complete ECG cycles of Lead II from both VsSys and the predicate device are overlaid together as shown in Fig. 8. The observed difference is insignificant, and the subtle morphological differences could be due to the small difference in electrode placement. The prominent PQRST waveform can be clearly observed for both cases. The small differences between them did not impact the HR estimation.

As the predicate device also produces 12 seconds interval of HR, RR, TMP and SpO2 against predicate over a period of 30 minutes where each time instance T is a multiple of 12 seconds. ‘bpm’ and ‘brpm’ denotes beats per minute and breaths per minute, respectively.

Fig. 8. Overlaying our ECG waveform against the predicate device for the 4 subjects.

Fig. 9. Overlaying HR, RR, TMP and SpO2 against predicate over a period of 30 minutes where each time instance T is a multiple of 12 seconds. ‘bpm’ and ‘brpm’ denotes beats per minute and breaths per minute, respectively.
with similar trending patterns. This includes HR (top-left of Fig. 9) ranging from about 60 to 95 bpm indicating the heart rate variability (HRV), RR (top-right of Fig. 9) ranging from 12 to 23 brpm, TMP (bottom-left of Fig. 9) ranging from about 36.7 °C to 36.9 °C, SpO₂ (bottom-right) ranging from 98% to 100%.

The HRV is due to the regulation of the autonomic nervous system [34].

For the statistical method, we used scatter plot to visualise the relationship between the measurement pairs (the predicate is represented on the x-axis and VsSys on the y-axis) and to estimate the correlation coefficient, r, which determines the closeness of the measurement pairs between both devices. Referring to the Taylor’s systems [35], r values < 0.35 are categorized as weak correlation, 0.36 to 0.67 as moderate correlation and 0.68 to 0.89 as strong correlation and values > 0.9 as very high correlation.

However, a strong correlation alone does not mean good agreement on the measurements between both devices. Hence, we also applied the Bland-Altman analysis [36], [37] to obtain two levels of gauge, which are the mean difference and the 95% limits of agreement (LoA) for each vital sign. Mean difference is defined as the average measurement difference between the measurement pairs. The mean difference shows how bias VsSys is against the predicate, where a positive/negative value indicates that VsSys produced readings that are higher/lower than the predicate. The LoA tells us that 95% of the data are within the specified range of the mean difference, indicating the certainty of the deviation. The LoA is composed of the upper bound (+1.96SD) and the lower bound (-1.96SD) of the mean difference. The upper/bound is obtained by adding the mean difference with the multiplication of positive/negative 1.96 by its standard deviation, respectively. We compare the results
obtained from the Bland-Altman against the acceptable discrepancies metric used in various clinical trials as tabulated in Table VI [18]. Vital signs within the acceptable discrepancies are deemed to be clinical significant. The scatter and the Bland-Altman plot of 14 subjects for HR, RR, TMP, SpO\textsubscript{2} and SBP from both the controlled and extended clinical trial are shown in Figs. 10 to 14, respectively. The resolutions in the scatter and Bland-Altman plot appears discrete when the measurement pairs are plotted directly, given that the predicate device produces vital signs resolution in whole number (except for TMP in one decimal point). As such, both the measurement pairs were randomized via a uniform de-rounding distribution function to its desired decimal point (HR, RR, TMP and SpO\textsubscript{2} to one decimal place and TMP to two decimal places). For example, the RR value of 15 brpm can be randomized and take a value from 14.5 to 15.4 brpm and TMP value of 36.5 °C can be randomized and take a value from 36.45 °C to 36.54 °C. In Figs. 10 to 14, ‘n’ is defined as the sum of an equal number of measurement pairs from each subject for 30 minutes at 12 seconds interval, ‘r’ is defined as the correlation coefficient. In Fig. 10, the HR has 2100 measurement pairs with a very high correlation score of 0.98, one standard deviation of ±1.58 and mean difference of -0.37 with LoA of -3.48 to 2.73 bpm. The RR has 2100 measurement pairs with a strong correlation score of 0.80, one standard deviation of ±2.19 and mean difference of -0.67 with LoA of -4.97 to 3.63 brpm as shown in Fig. 11. The TMP has 2100 measurement pairs with cluttered measurement pairs since there are minimal variation of TMP within the 30 minute period as shown in Fig. 12. In Fig. 13, the SpO\textsubscript{2} has 2100 measurement pairs within the range from 92% to 100%.

Fig. 15. The impact of ambulatory movement during continuous monitoring on various actions ((a) rest, (b) walk, (c) run and (d) rest). The top diagram shows the vital signs trend for a duration of 100 time units (20 minutes) and the bottom diagram shows a snapshot of the continuous raw signal for 3072 samples (12 seconds). The action ‘(a) rest’ occurs from about 0 to 25 time units, ‘(b) walk’ occurs from about 25 to 50 time units, ‘(c) run’ occurs from about 50 to 75 time units and ‘(d) rest’ from about 75 to 100 time units. The instantaneous vital signs from the vital signs trend at 13, 38, 63 and 88 time units are intersected by the blue, red, green and yellow lines, respectively. Each of these line points to its corresponding continuous vital signs as indicated by the blue, red, green and yellow boxes, respectively. Within each box, the ECG, IMP and PPG is represented by blue, red and green, respectively.
In Fig. 14, for SBP, we have limited blood pressure points from the predicate device as it takes about 3 minutes for generating a single value and the subject may not feel comfortable using the cuff-based predicate device throughout the trial. In literature, it is reported that the systolic blood pressure (SBP) is correlated with the pulse transit time (PTT) approach [38], [39]. Based on the collected ECG and PPG data, we model the SBP by extracting the PTT based on the time difference between the R-peak of the ECG and the PPG. Given the limited points available for analysis, we perform 5-fold cross-validation over 280 samples so that we can reuse the data that has been used for the test. The SBP has a strong correlation score of 0.78, one standard deviation of ±7.87 and mean difference of 0.61 with a LoA of -14.81 to 16.03 mm Hg.

The overall numerical metrics of the plots for each vital signs are summarized in Table VII. ‘n’ is defined as the total number of measurement pairs, ‘r’ is the correlation coefficient, ‘±1SD’ is the one standard deviation variation from the mean, ‘md’ is the mean difference, ‘ULOA’ and ‘LLOA’ is the upper and lower bound of LoA, respectively. In terms of efficacy with regards to the correlation r, all five vital signs possess strong correlation against the predicate results. In terms of clinical significance with regards to Table VI, the mean difference and one standard deviation of all vital signs are well within limits except for RR and SBP’s one standard deviation which is deviated by 0.19 bpm and 2.87 mm Hg, respectively. The LoA of HR, TMP and SpO₂ are also well within limits in terms of clinical significance. However, the upper and lower LoA of RR and SBP are deviated by a margin of [-2.97, 1.63] and [-9.81, 11.03], respectively.

IV. DISCUSSION

A. Performance Evaluation

We investigated the feasibility and effectiveness of continuous monitoring using VsSys for a cohort of healthy subjects in clinical trial settings. Table VIII is an extension of Table VII, and it shows the performance of VsSys against other works that were introduced in the earlier literature survey. From Table VIII, VsSys has demonstrated improved efficacy compared to other reported result, especially in one standard deviation (precision) and a narrower LoA. In terms of performance efficacy against the best reported results in literature, VsSys is more precise by 28.2%, 36.2%, 70.0%, 37.6% and 34.4% for HR, RR, TMP, SpO₂ and SBP, respectively and a narrower LoA by 24.5%, 23.9%, 50.6%, 37.4% and 34.4% for HR, RR, TMP, SpO₂ and SBP, respectively. The improved efficacy is contributed by several factors such as low-noise signal acquisition of sensor, analytics and also our methodology that captures the measurement pairs at similar time interval in contrast to cases of several minutes of lapse in certain trials due to manual recording [15]. Furthermore, inter and intra-observer variability were eliminated since we captured the continuous raw signals to derive the measurements of the vital signs. In addition, measurements done at a shorter interval of 12 seconds can provide better care and surveillance as vital signs can change drastically for patients under critical conditions [40]–[42]. The comparison of sensor specifications as listed in Table VIII are shown in Table IX. The parameter for comparison are ‘weight’ which refers to the total weight in grams, ‘DIM’ which refers to the dimension in terms of length (L), width (W) and height (H) in mm, ‘Hours’ which refers to the duration (number of hours) of continuous operation, ‘Wearable’ indicates if the sensor can be worn during monitoring, ‘CONT Raw’ indicates if the sensor could transmit continuous raw signals such as ECG, ‘IoT Capable’ indicates if the sensor could be connected wirelessly to the internet, ‘5 Vital Signs’ indicates if the system could provide five complete vital signs during monitoring and ‘HR, RR, TMP, SpO₂ and SBP’ indicates which type of vital signs are supported by the system. From the comparison, VsSys is a relatively light-weight wearable wireless five vital signs system while being able to achieve 24 hours of continuous operation with Internet of Things (IoT) capabilities. The closest matching continuous wearable wireless five vital signs that we could find is [18] where VsSys excels in terms of weight, dimension, duration of continuous operation and accuracy.

B. Limitations

A limitation of this study is the relatively low number of subjects. However, given that this was a preliminary feasibility study, further clinical evaluation with a significant number of subjects can be carried out to re-affirm the results. It is estimated that at least 385 subjects are required using the Cochran’s sample size formula with z-score of 1.96, population proportion of 0.5 and margin of error at 0.05 [43].
C. Performance during Ambulatory

In the clinical trials, subjects were monitored at rest and we were unable to make inference concerning the performance with patients during ambulatory motion. We made a quick study on the impact of ambulatory artifacts on the vital signs which are derived from the continuous raw signals (ECG, IMP, and PPG). These continuous raw signals are time-aligned using the timestamp and sampled at below 256 Hz has been up-sampled to 256 Hz. We introduced three actions, which are ‘rest’, ‘walk’ and ‘run’ to observe the accuracy and changes of the vital signs as shown in Fig. 15. The ‘rest’ involves the subject to be sitting on a chair and remaining still. This is used as a baseline where the continuous raw signals is free from motion artifacts. The ‘walk’ involves the subject to be walking and ‘run’ involves the subject to be running. Each action will be performed for about 5 minutes starting with ‘(a) rest’ followed by ‘(b) walk’, then ‘(c) run’ and then back to ‘(d) rest’. The purpose of these sequence of actions is to induce an increasing activity and then back to stationary.

Several observations can be deduced from these plots. The HR trend of VySys is similar to the predicate. This is mainly because the R-R peaks in the ECG waveform is still prominent and can be easily detected by our algorithm even in noisy and baseline wandering waveform. It is also observed that the HR trend increases when the subject increases the amount of activity and begins to decrease when the subject is at ‘(d) rest’. For TMP, the trend between the predicate and VySys is correlated. It can be seen that there is a gradual increase in TMP as the subject transit from ‘(a) rest’ to ‘(b) walk’, ‘(b) walk’ to ‘(c) run’ and a gradual decrease from ‘(c) run’ to ‘(d) walk’. It is also noted that the TMP is immune to motion artifact for all cases. For SpO$_2$, the PPG waveform appears to be oscillating more as the movement increases in contrast to ‘(a) rest’ and ‘(d) rest’. Even though the SpO$_2$ trend remains at 100% most of the time, the slight decrease and increase in SpO$_2$ at around the 40th time units to the 65th time units shows that there exists correlation trend even during increasing activity. The accuracy and correlation remains good during increasing activity because the modulation ratio derived from the PPG signals is independent of the oscillation in the waveform. However, there will be an impact on deriving pulse rate using the PPG peaks as the peaks of the PPG waveform (which represents the systolic
not detected, thus reducing false positives rates.

Additional spikes that resemble the R peaks of the ECG were during both ‘walk’ and ‘run’, as indicated by the asterisk on the IMP waveform. There are no significant changes in the TMP signal. However, the PPG waveform appears to experience abrupt baseline drift during ‘coughing’ and ‘sneezing’ and this is also reflected in its corresponding IMP signals. Looking at the continuous raw signal on each sub-figure of Fig. 16, classification of various user action using machine learning techniques can be further explored.

E. Trends

With regards to the trend on vital signs monitoring, we observed that the interest in electric and fiber-optic sensors embedded into textiles [5], [6] seems to be decreasing in recent years due to the need to have a wide range of apparel or belt shapes to adjust to the body. These sensors are now being replaced by patch monitors [45], [46] as they provide reliability in signal acquisition and ease in setup. In addition, non-contact sensors embedded into a bed or seat including direct skin-contact sensors [47] that do not require additional steps in the preparation for monitoring are also gaining traction and appealing given the minimal disruption on the user’s activity.

For future works, VsSys can also be extended to enable other healthcare application. This includes preventative healthcare through wide-scale deployment in a community or home care. The massive vital signs data collected through our innovative system would lead to a more affordable and better healthcare system. Future works can incorporate the use of the five vital signs into the modified early warning score to assist nurses and detecting patients with physiological deterioration [15], [18].

V. CONCLUSION

Our VsSys features a comprehensive in-house clinical grade ~66g continuous wireless low-power wearable biosensors (3-lead ECG, RR, TMP, Sp$_O_2$ and SBP) capable of 24-hour operation. The results from the system show strong correlation, within clinical accepted discrepancies for its mean difference and a narrower LoA for all vital signs when compared against reported results. This study proves the feasibility of employing wireless vital signs monitoring system to improve the productivity of hospital staff.

ACKNOWLEDGMENT

We would like to thank the subjects who participated during the clinical trials for their time. Dr. Lim Yinghao for the administrative works and supporting our clinical trial. We would also like to thank IMU of Yong Loo Lin School of Medicine, National University of Singapore for reserving time and space for us to conduct recce at the site prior to the actual extended clinical trial.
REFERENCES

David Wong Liang Tai (S’11–M’15–SM’18) received the B.Eng. degree with honours in Computer Systems Engineering from Curtin University of Technology, Western Australia in 2007 and the M.Eng. degree in Integrated Circuits and Embedded Systems from National University of Singapore, Singapore in 2014. He was with Panasonic Corporation as a research and development engineer cum technical lead from 2008 to 2011. He is currently a research associate in National University of Singapore, Singapore. His research interests include low-power embedded hardware and software co-design, data communications and network, translational research from clinical needs to technical/engineering ‘requirements, design, implementation, testing’ for supporting clinical trials. David is actively contributing to the Singapore Section Young Professionals Affinity Group where he served as a Secretary (2015), Vice-Chair (2016, 2019) and Chair (2017–2018).

Yu Jufeng (M’15) received the B. Eng. Degree in Electronic and Information Engineering from Nanjing University of Aeronautics & Astronautics, China, in 2007 and the Master degree in School of Electrical and Electronic Engineering from Nanyang Technological University, Singapore in 2010. He was a research associate in Nanyang Technological University and a software development engineer in Future Technology Devices International Singapore, he was a research engineer in National University of Singapore during this work. His primary research interests include signal processing, machine learning, wireless body sensor networks, data analysis and its application in health care systems.

Hoa Ngo received his PhD degree in computer science from the University of Montpellier, France. He has expertise in semantic & knowledge representation; clinical terminology; applied machine learning, deep learning, natural language processing in clinical text mining. He is now working as a research scientist at the Australian E-Health Research Centre, CSIRO.

Yongfu Li (S’09–M’14–SM’18) received the B.Eng. and Ph.D. degrees from the Department of Electrical and Computing Engineering, National University of Singapore (NUS), Singapore.

He is currently an Associate Professor with the Department of Micro and Nano Electronics Engineering and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, China. He was a research engineer with NUS, from 2013 to 2014. He was a senior engineer (2014-2016), principal engineer (2016-2018) and member of technical staff (2018-2019) with GLOBALFOUNDRIES, as a Design-to-Manufacturing (DFM) Computer-Aided Design (CAD) research and development engineer. His research interests include analog/mixed signal circuits, data converters, power converters, biomedical signal processing with deep learning technique and DFM circuit automation.

Dr. Li received the Singapore Economic Development Board GLOBALFOUNDRIES Graduate Scholarship. He is actively contributing to the Singapore Section Young Professionals Affinity Group and has served as the Secretary during 2012–2013 and the Chair during 2014–2015.

Deepu John (S’07–M’14–SM’15) received the B.Tech degree in Electronics and Communication engineering from University of Kerala, India, in 2002 and the M.Sc and PhD degrees in electrical engineering from National University Singapore, Singapore in 2008 and 2014 respectively. He is a recipient of Institution of Engineers Singapore Prestigious Engineering Achievement Award (2011), Best design award at Asian Solid State Circuit Conference (2013), IEEE Young Professionals, Region 10 individual award (2013). He served as a member of technical program committee for IEEE conferences ASICON 2017 TENCON 2016. He is a reviewer of several IEEE journals and conferences and serves as an Associate Editor for IEEE Transactions on Biomedical Circuits and Systems. His research interests include low power biomedical circuit design, energy efficient signal processing and wearable healthcare devices. He is a senior member of the IEEE.
Chongyu Zhou (M’16) received the BEng and PhD degrees from the Department of Electrical and Computer Engineering at the National University of Singapore in 2012 and 2017, respectively. His primary research interests include machine learning, distributed decision making and optimization, with applications to mobile crowd sensing and wireless sensor networks. He is a member of the IEEE.

Shashi Raj Singh received the B.Tech. degree from Indian Institute of Technology Kanpur, India and the M.S. degree from Polytechnic Institute of New York University, NY, all in electrical and computer engineering. He was a research associate in the Department of Electrical and Computer Engineering at the National University of Singapore. Previously, he has worked for two years as technical analyst at Reliance Communication, Mumbai, India. His research interests are in the area of wireless networks.

Alvin Koh received his B.Sci degree with honours from Singapore University of Social Science in 2007. He was also awarded EDB Stanford Biodesign scholarship in 2011. Received his training in Connecticut, USA and Shanghai, China in 2013. His skill included integrating new medical product design, hardware integration and testing activities of newly designed instruments at various phases against product requirements. He specialises experiment planning and execution from Design of Experiments, Root Cause Analysis and other DFSS methodologies. And lastly carried out Quality and Regulatory compliance. He works as a System Principal Engineer at Thermo Fisher Scientific Inc.

Rachel Hong received her B. Eng degree with honours in Materials Engineering from Nanyang Technological University (NTU), Singapore in 2003. She is currently the co-director of Medical Engineering Research and Commercialization Initiative (MERCi) at the National University of Singapore (NUS). Her expertise and research interests are in medical device development where she has lead 21 novel medical device projects, including cardiovascular implants, minimally invasive surgical tools, and microsensor based devices.

Bharadwaj Veeravalli, Senior Member, IEEE & IEEE-CS, received the BS degree in physics, from Madurai-Kamaraj University, India, in 1987, the Master's degree in Electrical Communication Engineering from the Indian Institute of Science (IISc), Bangalore, India in 1991, and the PhD degree from the Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India, in 1994. He received gold medals for his bachelor degree overall performance and for an outstanding PhD thesis (IISc, Bangalore India) in the years 1987 and 1994, respectively. He is currently with the Department of Electrical and Computer Engineering, Communications and Information Engineering (CIE) division, at The National University of Singapore, Singapore, as a tenured Associate Professor. His main stream research interests include G Cloud/Grid/Cluster computing (big data processing, analytics/machine learning and resource allocation), Scheduling in Parallel and Distributed systems, Cybersecurity (Cloud security, FHE), and multimedia computing. He is one of the earliest researchers in the field of Divisible Load Theory (DLT). He is currently serving the editorial board of IEEE Transactions on Parallel & Distributed Systems as an Associate Editor.

Mehul Motani received the B.E. degree from Cooper Union, New York, NY, the M.S. degree from Syracuse University, Syracuse, NY, and the Ph.D. degree from Cornell University, Ithaca, NY, all in Electrical and Computer Engineering.

Dr. Motani is currently an Associate Professor in the Electrical and Computer Engineering Department at the National University of Singapore (NUS) and a Visiting Research Collaborator at Princeton University. Previously, he was a Visiting Fellow at Princeton University. He was also a Research Scientist at the Institute for Infocomm Research in Singapore, for three years, and a Systems Engineer at Lockheed Martin in Syracuse, NY for over four years. His research interests include information theory and coding, machine learning, biomedical informatics, wireless and sensor networks, and the Internet-of-Things.

Dr. Motani was the recipient of the Intel Foundation Fellowship for his Ph.D. research, the NUS Annual Teaching Excellence Award, the NUS Faculty of Engineering Innovative Teaching Award, and the NUS Faculty of Engineering Teaching Honours List Award. He actively participates in the Institute of Electrical and Electronics Engineers (IEEE) and the Association for Computing Machinery (ACM). He is a Fellow of the IEEE and has served as the Secretary of the IEEE Information Theory Society Board of Governors. He has served as an Associate Editor for both the IEEE Transactions on Information Theory and the IEEE Transactions on Communications. He has also served on the Organizing and Technical Program Committees of numerous IEEE and ACM conferences.
Kee Chaing (KC) Chua received a PhD degree in Electrical Engineering from the University of Auckland, New Zealand in 1990 and joined the Department of Electrical Engineering at the National University of Singapore (NUS) as a Lecturer. He is now a full Professor in the Department of Electrical & Computer Engineering at NUS. He served as the Faculty of Engineering’s Vice Dean for Research twice, from 2003 to 2006 and from 2008 to 2009. From 1995 to 2000, he was seconded to the Centre for Wireless Communications (now the Institute for Infocomm Research), a national telecommunications R&D centre funded by the Singapore Agency for Science, Technology and Research as its Deputy Director. From 2001 to 2003, he was on leave of absence from NUS to work at Siemens AG where he was the Founding Head of the Mobile Core R&D Department in Singapore funded by Siemens’ ICM Group. From 2006 to 2008, he was seconded to the National Research Foundation in the Prime Minister’s Office as a Director. He was appointed Dean of the Faculty of Engineering at NUS in July 2014, after serving as Head of its Department of Electrical & Computer Engineering since November 2009. He chaired the World Economic Forum’s Global Agenda Council on Robotics and Smart Devices in 2011 and spoke on the role of robotics and smart devices in shaping new models of development at the World Economic Forum in Davos in January 2012. He is a recipient of an IEEE 3rd Millennium Medal, a Fellow of the Singapore Academy of Engineering, and a Fellow of the Institution of Engineers, Singapore. His research interests are in communication networks.

Chun-Huat Heng (S’96–M’04–SM’13) received the B.Eng and M.Eng degrees from the National University of Singapore, Singapore, in 1996 and 1999, respectively, and the Ph.D. degree from the University of Illinois at Urbana–Champaign, Urbana, IL, USA, in 2003. From 2001 to 2004, he was with Wireless Interface Technologies, which was later acquired by Chrontel. Since 2004, he has been with the National University of Singapore, where he is currently an Associate Professor. He is focusing on CMOS integrated circuits involving synthesizer, delay-locked loop, and transceiver circuits. Dr. Heng was the recipient of the NUS Annual Teaching Excellence Award in 2008, 2011, and 2013, and was in ATEA Honor Roll in 2014. He was the recipient of the Faculty Innovative Teaching Award in 2009 and the 2018 IES Prestigious Engineering Award. He was an Associate Editor of the IEEE TCAS-II, and was a Technical Program Committee member of the ISSCC and ASSCC. He currently serves as Associate Editor for IEEE Trans. on VLSI.

Yong Lian (M’90–SM’99–F’09) Dr. Lian’s research interests include biomedical circuits and systems and signal processing. He has published more than 300 papers and received more than 15 awards including IEEE Circuits and Systems Society’s Guillemin-Cauer Award, IEEE Communications Society Multimedia Communications Best Paper Award, Institution of Engineers Singapore Prestigious Engineering Achievement Award, Winner of the Design Contest Award in ISLPED2015.

Dr. Lian is the President of the IEEE Circuits and Systems (CAS) Society, Chair of the IEEE Periodicals Partnership Opportunities Committee, member of the IEEE Periodicals Committee, member of IEEE Periodicals Review and Advisory Committee, member of the IEEE Biomedical Engineering Award Committee, member of Steering Committee of the IEEE Transactions on Biomedical Circuits and Systems. He was the Editor-in-Chief of the IEEE Transactions on Circuits and Systems Part II for two terms. He served as the VP for Publications and VP for Region 10 of the IEEE CAS Society, and many other roles in IEEE. He is the Founder of the IEEE Biomedical Circuits and Systems Conference (BioCAS) and the Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). He is a Fellow of the Academy of Engineering Singapore.